
summaryRiskLot generic function to print the risk summary statistics at lot level
Source:R/summaryRiskLot.qraLm.R
summaryRiskLot.qraLm.RdPrint summary MC risk results per lot
Arguments
- x
qraLm object. See
Lot2LotGen()- ...
optional plot parameters passed to the plot function
Examples
dat <- Lot2LotGen(
nLots = 500,
sizeLot = 500,
unitSize = 500,
betaAlpha = 0.5112,
betaBeta = 9.959,
C0MeanLog = 1.023,
C0SdLog = 0.3267,
propVarInter = 0.7
)
DRmodel = "JEMRA"
population = 2
res <- DRForModel(dat,
model=DRmodel,
population = population)
str(res)
#> List of 15
#> $ Lot2LotGenParameters:List of 9
#> ..$ nLots : num 500
#> ..$ sizeLot : num 500
#> ..$ unitSize : num 500
#> ..$ betaAlpha : num 0.511
#> ..$ betaBeta : num 9.96
#> ..$ C0MeanLog : num 1.02
#> ..$ C0SdLog : num 0.327
#> ..$ propVarInter: num 0.7
#> ..$ Poisson : logi FALSE
#> $ lotMeans : num [1:500] 0.814 0.507 0.807 3.715 0.533 ...
#> $ unitsCounts : num [1:250000] 0 0 0 0 0 ...
#> $ N : num [1:500, 1:500] 0 0 0 0 0 ...
#> $ ProbUnitPos : num [1:500] 1 1 1 1 1 ...
#> $ P : num 0.868
#> $ betaGen : num [1:500] 0.1173 0.0294 0.1227 0.1951 0.0253 ...
#> $ nLots : num 500
#> $ sizeLot : num 500
#> $ unitSize : num 500
#> $ Risk : num [1:500, 1:500] 0 0 0 0 0 ...
#> $ lotMeanRisk : num [1:500] 4.31e-10 2.69e-10 4.28e-10 1.97e-09 2.82e-10 ...
#> $ servingRisk : num [1:500, 1:500] 0 0 0 0 0 ...
#> $ Model : chr "JEMRA"
#> $ Population : num 2
#> - attr(*, "class")= chr "qraLm"
summaryRiskLot.qraLm(res)